
Top 10 Open Source
Software (OSS)
Risks

By the Station 9 Research Team at Endor Labs



Authors

Henrik Plate,
Security
Researcher, Endor
Labs

Dimitri Stiliadis,
CTO & Co-Founder,
Endor Labs

Varun Badhwar,
CEO & Co-Founder,
Endor Labs

Ron Harnik
VP Marketing,
Endor Labs

Reviewers & Contributors

Anshu Gupta,
VP Security, Fast

Colin Anderson,
CISO, Ceridian

Gerhard
Eschelbeck,
CISO, Kodiak
Robotics

Maarten Van
Horenbeeck,

CISO, Adobe

Niall Browne,
CISO, Palo Alto
Networks

Shanku Niyogi,
VP Product
Management,
Databricks

Rachit Lohani,
CTO, Paylocity

Ralph Pyne,
CISO, Apollo.io

Kathy Wang,
CISO, Discord

Clint Maples,
CISO, F-500
company

Arkadiy Goykhberg,
CISO, Branch
Insurance

Jonathan
Meadows
MD Cybersecurity,
Citi

Talha Tariq,
CISO, HashiCorp

Selim Aissi,
CISO, Blackhawk
Network

Justin Dolly,
CSO, Sauce Labs

Ody Lupescu,
VP Security, Ethos

Yassir
Abousselham,
CISO, UiPath



Motivation & Methodology

80% of code in modern applications is code you didn’t write, but rely on through
open source packages. Open source has clearly won as the method to deliver
incredible value quickly, while leveraging the work of others, and hopefully
contributing back so that others may benefit from your work as well. The
selection, security, and maintenance of these open source dependencies are
crucial steps towards software supply chain security.

This document introduces the Top 10 Risks introduced through the dependency
on open source components throughout the software development process, e.g.,
the use of application frameworks like Spring Boot or libraries like Apache Log4j.

This list aims at addressing operational as well as security risks, and the target
audiences are both engineering and security leaders and practitioners seeking to
prioritize their open source governance programs.

This report does not mean to criticize open source projects. It is well-known that
open source is oftentimes more performant and secure than proprietary software.
And it is also clear that open source software comes as-is, without warranties of
any kind, and any risk of using it being solely on downstream users. Once an
organization decides to rely on open source code, its security becomes their
responsibility. Tools like the OpenSSF scorecard project, and now this Top 10 OSS
Risks framework, are here to help organizations make better decisions about the
software they rely on.



Top 10 Open Source Software Risks
Dependency Management 101

Let us quickly review some basic concepts of dependency management using a
simple example. Just skip this section if you’re familiar with dependency
management.

The root node of the dependency
graph displayed below represents
the example project. The child
nodes of the root represent 9 open
source components the project
“directly” depends on. Those
components, however, depend on
other components as well, all of
which become “transitive” or
“indirect” dependencies from the
perspective of the top-level project.

Direct dependencies are consciously selected by the project developers, e.g.,
through the declaration in a manifest file such as package.json (Node.js/npm)
or pom.xml (Java/Maven) file. Package managers take care of downloading and
installing those direct dependencies from 3rd party package repositories to the
developers workstation or a CI/CD system. When doing so, package managers also
identify transitive dependencies, resolve potential version conflicts and install
them locally. In other words, plenty of components are downloaded in an automated
fashion in order to make sure all code required by the example project (and more)
is present on the developer machine.



Risk Overview

Every single open source dependency of a software development project has plenty of
properties - both the component (i.e. the code or binary artifact downloaded) and the
corresponding open source project with all its stakeholders (e.g., contributors, maintainers)
and systems (e.g., source code management, build systems).

The following list provides an overview about 10 problematic properties, which can result in
significant security or operational risks for downstream consumers. Security risks can result
in the compromise of system or data confidentiality, integrity or availability. Operational risks
can endanger software reliability on the one hand, but can also increase the efforts and
investments required to develop, maintain or operate a software solution.

The deficiencies and risks will be described in more detail below, together with examples and
possible mitigation strategies.



Risk Description Category

OSS-RISK-1
Known Vulnerabilities

A component version may contain vulnerable code, accidentally
introduced by its developers. Vulnerability details are publicly
disclosed, e.g, through a CVE. Exploits and patches may or may not
be available.

Security

OSS-RISK-2
Compromise of
Legitimate Package

Attackers may compromise resources that are part of an existing
legitimate project or of the distribution infrastructure in order to
inject malicious code into a component, e.g, through hijacking the
accounts of legitimate project maintainers or exploiting
vulnerabilities in package repositories.

Security

OSS-RISK-3
Name Confusion Attacks

Attackers may create components whose names resemble names of
legitimate open-source or system components (typo-squatting),
suggest trustworthy authors (brand-jacking) or play with common
naming patterns in different languages or ecosystems
(combo-squatting).

Security

OSS-RISK-4
Unmaintained Software

A component or component version may not be actively developed
any more, thus, patches for functional and non-functional bugs may
not be provided in a timely fashion (or not at all) by the original open
source project

Ops

OSS-RISK-5
Outdated Software

A project may use an old, outdated version of the component
(though newer versions exist).

Ops

OSS-RISK-6
Untracked Dependencies

Project developers may not be aware of a dependency on a
component at all, e.g., because it is not part of an upstream
component’s SBOM, because SCA tools are not run or do not detect
it, or because the dependency is not established using a package
manager.

Security, Ops

OSS-RISK-7
License and Regulatory
Risk

A component or project may not have a license at all, one that is
incompatible with the intended use by a downstream consumer, or
one whose requirements are not or cannot be met by a downstream
user.

Ops

OSS-RISK-8
Immature Software

An open source project may not apply development best-practices,
e.g., not use a standard versioning scheme, have no regression test
suite, review guidelines or documentation. As a result, a component
may not work reliably or securely.

Ops

OSS-RISK-9
Unapproved Change
(Mutable)

A component may change without developers being able to notice,
review or approve such changes, e.g., because the download link
points to an unversioned resource, because a versioned resource has
been modified or tampered with or due to an insecure data transfer.

Security, Ops

OSS-RISK-10
Under/over-sized
Dependency

A component may provide very little functionality (e.g. npm micro
packages) or a lot of functionality (of which only a fraction may be
used).

Security, Ops



Detailed Descriptions
& Mitigations

Digging into the risks in more detail
Regarding mitigations strategies or controls, it is to be noted that they can
differ significantly in regards to effectiveness and implementation/operational
costs. Open source consumers should select them according to the specific
security, regulatory and business requirements at hand, similar to the maturity
levels proposed by OWASP SCVS or SLSA.

For example, building components from the sources of an open source project
avoids many security issues of build and distribution environments. However,
this control also comes with significant implementation costs such that it can
hardly be recommended as a default, must-have control.

https://owasp-scvs.gitbook.io/scvs/
https://slsa.dev/spec/v0.1/requirements


1.
OSS-RISK-1

Known Vulnerabilities

Description

A component version may contain vulnerable code,
accidentally introduced by its developers.
Vulnerability details are publicly disclosed, e.g,
through a CVE. Exploits and patches may or may not
be available.

Risk(s)

The vulnerability may be exploitable in the context
of the downstream software, which could
compromise the confidentiality, integrity or
availability of the respective system or its data.

Actions

● Regularly scan for vulnerabilities in all OSS versions used
● Prioritize findings to optimize resource allocation, e.g., by

using SAST tools to determine whether vulnerable code can
be executed in the context of the dependent software.

Examples

● CVE-2017-5638 in Apache Struts
(which caused the Equifax data breach)

● CVE-2021-44228 in Apache Log4j (Log4Shell)

References

● OWASP Top 10 A06:2021 – Vulnerable and
Outdated Components

https://en.wikipedia.org/wiki/Static_application_security_testing
https://republicans-oversight.house.gov/wp-content/uploads/2018/12/Equifax-Report.pdf
https://en.wikipedia.org/wiki/Log4Shell
https://owasp.org/Top10/A06_2021-Vulnerable_and_Outdated_Components/
https://owasp.org/Top10/A06_2021-Vulnerable_and_Outdated_Components/


2.
OSS-RISK-2

Compromise of
Legitimate Package

Description

Attackers may compromise resources that are part of
an existing legitimate project or of the distribution
infrastructure in order to inject malicious code into a
component, e.g, through hijacking the accounts of
legitimate project maintainers or exploiting
vulnerabilities in package repositories.

Risk(s)

Malicious code can be executed on end-user systems
or on systems belonging to the organization that
develops and/or operates the dependent software
(e.g., build systems or developer workstations). The
confidentiality, integrity and availability of systems
and the data processed/stored thereon is at risk.

Actions

There’s no single action to detect and prevent the
ingestion of compromised packages. Organizations
should consult emerging standards and frameworks like
the OpenSSF Secure Supply Chain Consumption
Framework (S2C2F) to inform themselves about
possible safeguards, which should be selected and
prioritized according to individual security
requirements and risk appetite.

Example actions include:
● Verify component provenance according to SLSA
● Build component from the sources (yourself or a

trusted 3rd-party)
● Review code manually and/or automatically
● Retrieve all components from a secured internal

store (such binary repositories host home-made
binaries and mirror external components)

Examples

● Event-stream: This attack on a legitimate component
targeted users of Copay Bitcoin wallets.

● The SolarWinds Cyber-Attack

References

● Risk Explorer for Software Supply Chains - Subvert
Legitimate Package (AV-001)

● OpenSSF Supply chain Levels for Software Artifacts (SLSA)
● MITRE ATT&CK Compromise Software Dependencies and

Development Tools
● CICD-SEC-3: Dependency Chain Abuse

https://blog.npmjs.org/post/180565383195/details-about-the-event-stream-incident
https://www.cisecurity.org/solarwinds
http://riskexplorer.endorlabs.com/
https://riskexplorer.endorlabs.com/#/attack-tree?av=AV-001
https://riskexplorer.endorlabs.com/#/attack-tree?av=AV-001
https://slsa.dev/
https://attack.mitre.org/techniques/T1195/001/
https://attack.mitre.org/techniques/T1195/001/
https://owasp.org/www-project-top-10-ci-cd-security-risks/CICD-SEC-03-Dependency-Chain-Abuse


3.
OSS-RISK-3

Name Confusion
Attacks

Description

Attackers may create components whose names
resemble names of legitimate open-source or system
components (typo-squatting), suggest trustworthy
authors (brand-jacking) or play with common naming
patterns in different languages or ecosystems.

Risk(s)

Malicious code can be executed on end-user systems
or on systems belonging to the organization that
develops and/or operates the dependent software
(e.g., build systems or developer workstations). The
confidentiality, integrity and availability of systems
and the data processed/stored thereon is at risk.

Actions

Prior to installing/using a component:
● Check code characteristics (pre/post installation

hooks, encoded payloads, etc.) and project
characteristics (source code repository, maintainer
accounts, release frequency, number of
downstream users, etc.) for leading risk indicators.
Note that some component metadata is not
verified by package repositories, thus, can easily
be forged by attackers.

● Verify signatures (if any)

Examples

● Colourama: Typo-squatting attack on the legitimate
Python package “colorama” to redirect Bitcoin
transfers to an attacker-controlled wallet.

References

● Risk Explorer for Software Supply Chains (overview
about attack vectors with plenty of references to
real-world attacks, safeguards, etc.)

● OpenSSF Supply chain Levels for Software Artifacts
(SLSA)

● MITRE ATT&CK Compromise Software Dependencies
and Development Tools

● CICD-SEC-3: Dependency Chain Abuse

https://bertusk.medium.com/cryptocurrency-clipboard-hijacker-discovered-in-pypi-repository-b66b8a534a8
http://riskexplorer.endorlabs.com/
https://slsa.dev/
https://attack.mitre.org/techniques/T1195/001/
https://attack.mitre.org/techniques/T1195/001/
https://owasp.org/www-project-top-10-ci-cd-security-risks/CICD-SEC-03-Dependency-Chain-Abuse


4.
OSS-RISK-4

Unmaintained
Software

Description

A component or component version may not be
actively developed any more, thus, patches for
functional and security bugs may not be available.

Risk(s)

The patch development may need to be done by
downstream developers with potentially less
experience and knowledge regarding the affected
component. This can result in increased efforts and
longer resolution times. During that time, the
system remains exposed.

Actions

● Check project liveliness and health, e.g., the number of
active maintainers/contributors, release frequency or the
number of issues and pull requests opened/closed. Note,
however, that little activity can also be a sign of maturity.
Projects that are considered feature-complete and
mature will see less activity than projects under active
development, and still receive timely patches in case of
problems.

● Search for information on a project’s maintenance or
support strategy, e.g., the presence and dates of LTS
versions

● Check the project page for explicit mentions of
maintenance status (e.g., an archived GitHub project)

Examples

● Gorilla Web Toolkit
● Adoptoposs or Jazzband

(Web pages used by projects to find new
co-maintainers)

● Spring Boot support time frames

References

● OWASP Top 10 A06:2021 – Vulnerable and
Outdated Components

● Bus factor
● CWE-1104: Use of Unmaintained Third Party

Components
● CWE-1329: Reliance on Component That is Not

Updateable

https://github.com/gorilla
https://adoptoposs.org/
https://jazzband.co/
https://spring.io/projects/spring-boot#support
https://owasp.org/Top10/A06_2021-Vulnerable_and_Outdated_Components/
https://owasp.org/Top10/A06_2021-Vulnerable_and_Outdated_Components/
https://en.wikipedia.org/wiki/Bus_factor
https://cwe.mitre.org/data/definitions/1104.html
https://cwe.mitre.org/data/definitions/1104.html
https://cwe.mitre.org/data/definitions/1329.html
https://cwe.mitre.org/data/definitions/1329.html


5.
OSS-RISK-5

Outdated Software

Description

A project may use an old, outdated version of the
component (though newer versions exist).

Risk(s)

Falling too much behind the latest releases of a
dependency can make it difficult to perform timely
updates in emergency situations, e.g., when a
vulnerability is disclosed for the version in use. Old
releases may also not receive the same level of security
assessment as recent versions, esp. whether they are
affected by vulnerabilities. If a new version is
syntactically or semantically incompatible with the
current version in use, application developers may
require significant update/migration efforts to resolve
the incompatibility.

Actions

Keep dependencies up-to-date, e.g., by using tools
that create merge/pull requests with update
suggestions, and making dependency updates
recurring backlog items

Examples

● Spring Boot support time frames

References

● OWASP Top 10 A06:2021 – Vulnerable and Outdated
Components

https://spring.io/projects/spring-boot#support
https://owasp.org/Top10/A06_2021-Vulnerable_and_Outdated_Components/
https://owasp.org/Top10/A06_2021-Vulnerable_and_Outdated_Components/


6.
OSS-RISK-6

Untracked
Dependencies

Description

Project developers may not be aware of a
dependency on a component at all, e.g., because it
is not part of an upstream component’s SBOM,
because SCA tools are not run or do not detect it, or
because the dependency is not established using a
package manager.

Risk(s)

Flying under the radar, the respective component
cannot be checked or monitored for any of the
other deficiencies.

Actions

● Evaluate and compare SCA tools regarding their
capability to produce accurate bills of materials,
both at coarse-granular level (e.g.,
dependencies declared with help of package
management tools likes Maven or npm) and
fine-granular level (e.g., artifacts like single files
included “out of band”, i.e., without using
package managers)

Examples

● Incomplete SBOMs received for upstream components or
produced by SCA tools

● Inclusion of 3rd-party code in a managed (tracked)
dependency, e.g., code snippets, 3rd-party source code
files (copied as-is into the dependency’s sources) or
3rd-party compiled code (e.g., platform-specific binaries or
re-bundled Java archives/class files)

● Not using a package manager at all
● IDE plugins, build scripts, test dependencies or other

developer tools, though not included in the dependent
software itself, still pose security and operational risks.

References

● OWASP SCVS V1 Inventory and V2 Software Bills of Materials
● Fossology

https://owasp-scvs.gitbook.io/scvs/v1-inventory
https://owasp-scvs.gitbook.io/scvs/v2-software-bill-of-materials
https://www.fossology.org/


7.
OSS-RISK-7

License and
Regulatory Risk

Description

A component or project may not have a license at all,
one that is incompatible with the intended use by a
downstream consumer, or one whose requirements are
not or cannot be met by a downstream user. A
component may also violate license terms independent
from downstream use, e.g., if it is licensed as GPL but
includes files licensed under the original (4-clause) BSD
license. A component may also conflict with legal and
regulatory requirements, e.g., related to FedRAMP
certification or export control.

Risk(s)

It is important to use components in compliance with
their license terms. The absence of a license or
non-compliant use can result in copyright or license
infringements, which the copyright holder can take legal
action against. The violation of legal and regulatory
requirements can constrain or hamper addressing
certain verticals or markets.

Actions

● Identify acceptable licenses for the intended use of
the component in the software under development,
considering, for instance, how the component is
linked, the software’s deployment model (cloud,
on-premise/device) and the intended distribution
scheme.

● Comply with requirements stated in the open source
licenses

● Avoid components without license
● Scrutinize component files for multiple and/or

incompatible licenses

Examples

● Free Software Foundation, Inc. v. Cisco Systems, Inc. (2008)

References

● OSI Licenses & Standards
● SPDX License List
● Reuse Software
● GPL-Incompatible Free Software Licenses

https://www.fsf.org/licensing/complaint-2008-12-11.pdf
https://opensource.org/licenses
https://spdx.org/licenses/
https://reuse.software/
https://www.gnu.org/licenses/license-list.html#GPLIncompatibleLicenses


8.
OSS-RISK-8

Immature Software

Description

An open source project may not apply development
best-practices, e.g., not use a standard versioning
scheme, have no regression test suite, no development
or review guidelines or no documentation. As a result, a
component may not work reliably or securely (in the
sense of having security weaknesses that result in
exploitable vulnerabilities).

Risk(s)

The dependency on an immature component or project
comes with operational risks. The dependent software may
not work as expected and result in runtime reliability
issues, or its use may be overly complex and expensive for
the dependent software development organization.
For example, a component or project may lack
documentation, may not use or comply with an established
versioning scheme (which can result in breaking changes
during component updates), or may not have a test suite to
discover regressions introduced through pull/merge
requests. Such cases can increase the effort of developers
depending on such components.

Actions

● Check whether a project follows development
best-practices, e.g., the presence, quality and
up-to-dateness of project documentation and
release notes, the presence of badges to indicate
test coverage or the presence of CI/CD pipelines to
detect regressions.

● A proxy for checking project maturity may also be
the number of downstream dependents.

Examples

● None

References

● OpenSSF Best Practices Badge Program
● Common Weakness Enumeration

https://bestpractices.coreinfrastructure.org/en
https://cwe.mitre.org/


9.
OSS-RISK-9

Unapproved Change
(mutable)

Description

A component may change without developers being
able to notice, review or approve such changes, e.g.,
because the download link points to an unversioned
resource, because a versioned resource has been
modified or tampered with or due to an insecure data
transfer.

Risk(s)

Using components that are not guaranteed to be
identical when downloaded at different points in time
are primarily a security risk. Attacks such as on the
Codecov Bash Uploader demonstrate the risk of piping
downloaded scripts directly to bash, without checking
their integrity beforehand. Mutable components also
threaten the stability and reproducibility of software
builds.

Actions

● Use resource identifiers providing guarantees (or at least
some degree of assurance) to always point to the same,
immutable artifact.

● Additionally, verify digests or signatures after component
download and before installation/use

● Use secure protocols for connection/distribution to avoid
MITM attacks

Examples

● References to non-versioned shell scripts in CI/CD
pipelines (e.g., https://codecov.io/bash)

● References to Git repositories without commit identifier
(e.g., https://raw.githubusercontent.com/…/main/install.sh)

● HTTP links to package repositories (e.g.,
CVE-2021-26291)

References

● SLSA Immutable Reference
● CWE-829: Inclusion of Functionality from Untrusted

Control Sphere
● CWE-830: Inclusion of Web Functionality from an

Untrusted Source
● OWASP Top 10 A08:2021 – Software and Data Integrity

Failures
● Codecov Bash Uploader Security Update

https://slsa.dev/spec/v0.1/requirements#immutable-reference
https://cwe.mitre.org/data/definitions/829.html
https://cwe.mitre.org/data/definitions/829.html
https://cwe.mitre.org/data/definitions/830.html
https://cwe.mitre.org/data/definitions/830.html
https://owasp.org/Top10/A08_2021-Software_and_Data_Integrity_Failures/
https://owasp.org/Top10/A08_2021-Software_and_Data_Integrity_Failures/
https://about.codecov.io/security-update/


10.
OSS-RISK-10

Under/over-sized
Dependency

Description

A component may provide very little functionality
(e.g. npm micro packages) or a lot of functionality
(of which only a fraction may be used).

Risk(s)

Very small components, e.g. ones containing few lines
of code only, are subject to the same supply chain
risks as large ones, e.g. account take-over, malicious
pull requests or CI/CD vulnerabilities, for comparably
little functionality. In other words, in exchange for
very few lines of code used, the consumer’s security
becomes dependent on the upstream project’s
security and development posture.

Very large components, on the other hand, may have
accumulated many features that are not needed in
standard use-cases, but contribute to the
component’s attack surface. Additionally, such
unused features may also bring in additional, unused
dependencies (bloated dependencies).

Actions
● Redevelop the specific functionality needed internally.

Examples

● Apache Log4j (a large dependency coming with many
features)

● Left-pad (a small dependency)

References

● Feature creep
● A comprehensive study of bloated dependencies in the

Maven ecosystem

https://www.theregister.com/2016/03/23/npm_left_pad_chaos/
https://en.wikipedia.org/wiki/Feature_creep
https://link.springer.com/article/10.1007/s10664-020-09914-8#:~:text=Bloated%20dependencies%20are%20libraries%20that,binary%20and%20increase%20maintenance%20effort
https://link.springer.com/article/10.1007/s10664-020-09914-8#:~:text=Bloated%20dependencies%20are%20libraries%20that,binary%20and%20increase%20maintenance%20effort


Conclusion
The first decade of open source adoption was all about speed and productivity.
Developers could use open source to deliver software faster than ever before, and
the communities built on open source software (OSS) became a home for amazing
developers and innovation that moves at breakneck speed. Today, most companies
are not able to compete in the marketplace without a heavy reliance on OSS, which
also drives more and more companies to sponsor and participate in the OSS
ecosystem. These changes have ushered in a new stage of maturity, and companies
now have to consider how to keep relying on OSS in a safe and scalable way.

The traditional approach to OSS security has its roots in compliance, a big part of
which, when it comes to OSS, is making sure that packages don’t carry any known
vulnerabilities. This is why CVEs quickly became the ultimate risk indicator for OSS,
and remain so today. But as this exploration of the top 10 OSS risks shows, CVEs are
only one vector of attack, and a lagging indicator of risk.

OSS became the bedrock of modern software development, but whether it is a weak
or strong link in the software supply chain depends on which and how OSS is used.
Next-generation attacks such as name confusion attacks cannot be captured by
CVEs, and neither can the operational risks of unmaintained, outdated, or untracked
dependencies.

Thanks to the tremendous efforts of foundations like OWSAP and the OpenSSF,
maintainers and consumers have more tools than ever to evaluate and strengthen
the security of open source projects. We hope that publications like this one will
help organizations implement a holistic view of risk - both security and operational.



About Endor Labs
Endor Labs helps developers spend less time dealing with security issues and more time
accelerating development through safe Open Source Software (OSS) adoption. Our
Dependency Lifecycle Management™ Solution helps organizations maximize software reuse
by enabling security and development teams to select, secure, and maintain OSS at scale.
The Endor Labs engineering team includes some of the world’s leading static analysis
experts, including 7 PhDs and senior engineers from Meta, Uber, Amazon, and Microsoft.
Endor Labs was founded by industry veterans Varun Badhwar and Dimitri Stiliadis, and is
backed by Lightspeed & Dell Technologies Capital, as well as executives at companies like
Palo Alto Networks, Zscaler, Zoom, Google, and more.




